
QUANTITATIVE STABILITY OF SOBOLEV INEQUALITIES ON

COMPACT RIEMANNIAN MANIFOLDS

FRANCESCO NOBILI AND DAVIDE PARISE

Abstract. We study quantitative stability results for different classes of Sobolev inequalities
on general compact Riemannian manifolds. We prove that, up to constants depending on
the manifold, a function that nearly saturates a critical Sobolev inequality is quantitatively
W 1,2-close to a non-empty set of extremal functions, provided that the corresponding optimal
Sobolev constant satisfies a suitable strict bound. The case of sub-critical Sobolev inequalities
is also covered. Finally, we discuss degenerate phenomena in our quantitative controls.
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1. Introduction

In the standard round sphere Sd, for d > 2, the sharp Sobolev inequality reads:

(1.1) ∥u∥2
L2∗ ≤ S2d∥∇u∥2L2 + Vol(Sd)−2/d∥u∥2L2 , ∀u ∈ W 1,2(Sd),

where 2∗ := 2d/(d− 2) is the Sobolev conjugate exponent, and Sd > 0 is the optimal constant
in the sharp Euclidean Sobolev inequality

(1.2) ∥u∥L2∗ ≤ Sd∥∇u∥L2 , ∀u ∈ Ẇ 1,2(Rd).

The value

Sd =

(
2∗ − 2

d

) 1
2

Vol(Sd)−1/d,
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was found by Aubin [Aub76b] and Talenti [Tal76], while the validity of (1.1) goes back to
[Aub76a] where also non-constant extremal functions were classified (see [Heb99, Chapter 5]):

(1.3) ua,b,z0 := a(1 − b cos(d(·, z0))
2−d
2 , with a ∈ R, b ∈ (0, 1), z0 ∈ Sd.

Here d is the geodesic distance on Sd. In light of this, a natural question is the one of stability:

If u ̸= cst nearly saturates (1.1), is u close to some ua,b,z0?

This question is equivalent (up to a change of coordinates via the stereographic projection, see
e.g. [FL12, Appendix A]) to the analogous question raised in [BL85] for the Euclidean Sobolev
inequality (1.2) and was addressed in Bianchi and Egnell’s work [BE91]. The quantitative
stability for (1.2) initiated in loc. cit. has been then studied thoroughly in subsequent works
[CFMP09, FN19, Neu20, FZ22] dealing with p-Sobolev inequalities for p ̸= 2, and recently in
[DEF+23, DEF+24] with explicit constant (see also to the related [Kö23] and [Fra23]).

Aim of this manuscript is to study quantitative stability of optimal Sobolev inequalities on a
general closed Riemannian manifold in connection with the existence of extremal functions. We
now start by recalling the notions of optimal constants appearing in the celebrated AB-program
referring to [Heb99], see also [Aub98, DH02a] and references therein. Given d > 2 and (M, g)
a closed, i.e. compact and boundaryless, d-dimensional smooth Riemannian manifolds, we can
consider for constants A,B ≥ 0 the following type of Sobolev inequalities

(∗) ∥u∥2
L2∗ ≤ A∥∇u∥2L2 + B∥u∥2L2 , ∀u ∈ W 1,2(M).

Notice that an equation as (1.2) cannot hold due to the presence of constant functions and,
differently from the Euclidean case, it is not straightforward to consider a single sharp Sobolev
inequality due to the presence of two constants. The AB-program then starts with the definition
of the following Sobolev constants:

α(M) := inf{A : (∗) holds for some B}, β(M) := inf{B : (∗) holds for some A},
where we understand the infimum over an empty set as being +∞. The first natural problem
is then to determine the value of α(M) and β(M). It is rather straightforward to see (e.g.
[Heb99, Sec 4.1]) that the latter satisfies

β(M) = Volg(M)−2/d.

On the other hand, the value of α(M) turns out to be linked to the sharp Euclidean Sobolev
constant. More precisely, in [Aub76b] (see also [Heb99, Theorem 4.5]) it is shown that

(1.4) α(M) = S2d.

In particular, α(M) does not depend on M but only on its dimension d. A more subtle question
is whether these two constants are actually attained, i.e. if they are minima. For instance, for
M = Sd we have in (1.1) the validity of a Sobolev inequality with A = α(Sd) and B = β(Sd)
and they are attained by the family (1.3).

More generally, and starting from the easiest one, it was shown in [Bak94] that β(M) is a
minimum (see also [Heb99, Theorem 4.2]), i.e. there is A > 0 so that (∗) holds with A and
β(M). It is instead a deep result of [HV96] that α(M) is attained, i.e. there is B > 0 so that
(∗) holds with α(M) and B. Thanks to these results, we can define two further notions of
Sobolev constants. We can fix B = β(M) and proceed with the A-part of this program, i.e.
minimizing over the admissible A > 0 and consider more generally all sub-critical ranges

(∗A) ∥u∥2Lq ≤ A∥∇u∥2L2 + Volg(M)2/q−1∥u∥2L2 ,
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for q ∈ (2, 2∗]. Conversely, we can fix A = α(M) and proceed with the B-part of this program,
i.e. minimizing over the admissible B > 0 and consider

(∗B) ∥u∥2
L2∗ ≤ S2d∥∇u∥2L2 + B∥u∥2L2 .

Then, we can define the corresponding notions of second-best optimal constants

Aopt
q (M) := inf{A > 0: (∗A) holds with A}, Bopt

2∗ (M) := inf{B > 0: (∗B) holds with B},

Differently from α(M), β(M) these two constants are automatically minima. Moreover,

universal bounds depending on the geometry of M are given for Aopt
q (M) in [DH02b, Theorem

4.4] (see also [NV22, Proposition 5.1] for general q), and for Bopt
2∗ (M) in [HV95].

Having established two classes of optimal Sobolev inequalities, it is natural to investigate the
existence of extremal functions. Let us consider the following sets:

Mq(A) := {u ∈ W 1,2 \ {0} : equality holds with u in (∗A) for A = Aopt
q (M)},

M2∗(B) := {u ∈ W 1,2 \ {0} : equality holds with u in (∗B) for B = Bopt
2∗ (M)}.

The existence and compactness properties of extremal functions become challenging in the
critical case due to the apriori lack of compactness of the embedding W 1,2 ↪→ L2∗ . We will see
that compactness properties are related to the values of the constants Aopt

2∗ (M), Bopt
2∗ (M). Notice

however that Mq(A) always contains constant functions thanks to the value of the B-constant
in (∗A). In particular, it is never empty as defined. However, we do not restrict our analysis to
non-constant extremal functions in this case, as these could be the only extremal functions (see
[Fra22] and below). Finally, we refer the reader to [HV01, DD01, BM07, BM09, Bar10, BM12],
where extremal functions in the AB-program have been investigated.

Statement of the main results. Here we present our main quantitative stability results. As
already observed, Mq(A) is never empty as it contains constant functions. Also, by definition

of α(M), we always have Aopt
2∗ (M) ≥ S2d. However, assuming this inequality to be strict, we

gain pre-compactness of (normalized) extremizing sequences via concentration-compactness
methods in the spirit of [Lio84, Lio85], cf. Proposition 2.1. Under this assumption, or more
easily in the sub-critical range, we can prove the following.

Theorem 1.1. Let (M, g) be a closed d-dimensional Riemannian manifold, d > 2. Assume

that either 2 < q < 2∗, or q = 2∗ and Aopt
2∗ (M) > S2d. Then, there are non-negative constants

C, γ depending on (M, g) and on q so that, for every u ∈ W 1,2(M) \ {0}, it holds

Aopt
q (M)∥∇u∥2L2 + Volg(M)2/q−1∥u∥2L2

∥u∥2Lq

− 1 ≥ C

(
inf

v∈Mq(A)

∥u− v∥W 1,2

∥u∥W 1,2

)2+γ

.

The above stability result in Theorem 1.1 is strong, as we are able to control the full
W 1,2-distance from a set a non empty set of extremal functions with the related Sobolev deficit.
On the other hand, the constant C and the exponent γ crucially depend on the manifold
M and on the value q as an outcome of the proof-strategy. A natural question at this point
is whether, on a manifold (M, g), we can expect the strict binding inequality to hold and,
therefore, a critical stability result. This heavily depends on the metric g, as it is known from
[DD01, Corollary 2] that we always have Aopt

2∗ (M,h) = S2d (adding the dependence on the
metric) for a suitable metric h in the conformal class of g. However, for certain manifolds this
scenario is very rigid (see Proposition 5.9 and Proposition 5.12 in [Heb99]). More generally,
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the continuity properties studied in [NV22, Theorem 6.2] suggests that, as soon as there is g

satisfying Aopt
2∗ (M, g) > S2d, there are infinitely many others metrics.

We pass now to our second main result, which is a weaker stability results only around
minimizer for Bopt

2∗ (M). Let us first comment on the non-emptyness of the set of extremal

functions for Bopt
2∗ (M). When d ≥ 4, work of Hebey [Heb99, Proposition 5.1] implies

(1.5) Bopt
2∗ (M) ≥ d− 2

4(d− 1)
S2d max

M
Rg,

where Rg denotes the scalar curvature of M . When this inequality is strict, the deep analysis
of [DD01] guarantees that M2∗(B) ̸= ∅. See also Theorem 2.3 below for further details. As

constant functions might not be extremals, unless Bopt
2∗ (M) = β(M), this result is striking. The

dimensional restriction d ≥ 4 is due to the need to consider a more general class of p-Sobolev
inequalities with p ̸= 2 when d = 3, see [DD01]. Under this assumption, we prove the following.

Theorem 1.2. Let (M, g) be a closed d-dimensional Riemannian manifold, d ≥ 4. Assume

Bopt
2∗ (M) > d−2

4(d−1)S
2
d maxM Rg. Then, there are non-negative constants C, γ, δ depending on

(M, g) so that it holds

S2d∥∇u∥2L2 + Bopt
2∗ (M)∥u∥2L2 − 1 ≥ C

(
inf

v∈M2∗ (B)

∥u− v∥W 1,2

∥u∥W 1,2

)2+γ

,

for all u ∈ W 1,2(M) so that ∥u∥L2∗ = 1 and ∥u− v∥W 1,2 < δ∥u∥W 1,2 for all v ∈ M2∗(B) with
∥v∥L2∗ = 1.

The above is a weaker form of stability due to the assumption forcing u to be close to the
set of extremizers. Indeed, contrary to Theorem 1.1, here we cannot rely on a concentration-
compactness principle (see Remark 3.3 for details). Besides, the continuous dependence

g 7→ Bopt
2∗ (M, g) studied in [BM12] implies the abundance of metrics for which (1.5) holds

strict.

Given the above results, it is natural to ask if our results hold sharp with quadratic exponent,
i.e. with γ = 0. This is the typical desirable feature in stability problems. For instance, in
[CES23], respectively [ENS22], the authors show that quadratic stability might fail for the
quantitative isoperimetric inequality, respectively the quantitative stability of minimizing
Yamabe metrics, on specific manifolds. This degenerate phenomenon has been later analyzed by
[Fra22] (see Corollary 1.4 below), and subsequently in [FP24], and [BDS23, BDS24b, BDS24a]
for different functional inequalities. Our next results deal with degenerate phenomena.

Theorem 1.3. Let q ∈ (2, 2∗] and let (M, g) be satisfying the hypothesis of Theorem 1.1. Assume
further that there are no non-constant extremal functions, i.e. Mq(A) = {c : c ∈ R \ {0}}.
Then, the stability in Theorem 1.1 is degenerate, i.e. it must hold with some γ > 0.

We point out that this result is in line with the examples studied by Frank in [Fra22], as we
prove in the next corollary. The exponent γ = 2 follows from the analysis in loc. cit.

Corollary 1.4. For d > 2, we have:

i) Theorem 1.1 does not hold with γ = 0 for q ∈ (2, 2∗) and M = Sd;
ii) Theorem 1.1 does not hold with γ = 0 for q = 2∗ and M = S1

(
1√
d−2

)
× Sd−1.

Finally, in all of the above, γ = 2 is sharp.
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It is unclear whether this degenerate phenomenon can happen also in Theorem 1.2, and if
M∗ = S1(1/

√
d− 2) × Sd−1 provides again a counterexample. Moreover, we are only aware of

estimates for Bopt
2∗ (M∗) ([HV92] and [Heb99, Proposition 5.4]) and not its explicit value.

Comparison with related works. Quantitative stability results are ubiquitous in the
literature. In the classical Euclidean setting, several geometric and functional inequalities
have been analyzed from the viewpoint of stability with different techniques. We refer to the
aforementioned references regarding the Sobolev inequality, to the surveys [Fig13, Fus15], and
the references therein.

On the contrary, in the non-linear framework of Riemannian manifolds, we cannot rely
on underlying symmetries of any kind as, for instance, in (1.3) for Sd. In fact, our main
argument follows a well-established approach, that is to argue via a Lyapunov-Schmidt reduction
argument [Sim83] and  Lojasievicz inequality [ Loj65] to produce quantitative stability estimates.
This fruitful interaction has been pionereed in [CES23] for the quantitative stability of the
Riemannian isoperimetric inequality, and it was later employed to study stability properties of
minimizing Yamabe metrics in [ENS22] (see also the recent [CK24], we refer to [Yam60] and
the surveys [LP87, BM11] regarding the Yamabe problem). In the present work, we exploit
the similarities between the latter and our setting.

Besides degenerate phenomena, it is natural to investigate sharp stability results with
exponent γ = 0 holding generically in the space of Riemannian metrics. However, in contrast
with [ENS22] where this follows by work Schoen [Sch89], see also [And05], the picture here
seems to be more delicate. First, to formulate a generic statement, one needs to check that the
strict inequalities on our optimal constants are open conditions in the set of C3-metrics. In this
direction, recall the continuity properties of g 7→ Aopt

q (M, g), g 7→ Bopt
2∗ (M, g) studied in [NV22]

and [BM12], respectively. Then, the key point would be to prove that generically inside the
relevant open sets of metrics, minimizers (or, more generally, non-negative critical points) of

Aopt
q (M, g)∥∇u∥2L2 + Volg(M)2/q−1∥u∥2L2

∥u∥2Lq

and
S2d∥∇u∥2L2 + Bopt

2∗ (M, g)∥u∥2L2

∥u∥2
L2∗

are non-degenerate. Notice again that the first always admits constant minimizers while, the
second does not in general, unless Bopt

2∗ (M, g) = Volg(M)2/2
∗−1 (this, however, can always

happen in the conformal class of a given metric again by [DD01, Corollary 2]). Constant
critical points are typically excluded from this kind of analysis, see e.g. [GM13, MP09]. Recall
also that they can be pathological in this regard, as discussed in Theorem 1.3 and Corollary
1.4. Finally, even restricting our investigation to nonconstant extremal functions, it seems
that standard transversality arguments [Hen05, Whi91] would require extra regularity on the

dependence g 7→ Aq(M, g), g 7→ Bopt
2∗ (M, g).

We conclude by mentioning that assuming Ricci curvature constraints makes it possible to
investigate more sophisticated stability statements in comparison geometry. In this fashion, we
recall [CMM19] for the Lévy-Gromov isoperimetric inequality, and [BBG85, Ber07, CMS23,
FGS22] for the Lichnerowicz spectral gap. Concerning Sobolev inequalities, qualitative stability
results were deduced in [NV22, NV24] under Ricci lower bounds. The main difference with
this note (besides the qualitative/quantitative analysis and curvature bounds) is that in
[NV22, NV24] the stability properties are studied facing lack of compactness and with explicit
classes of -a priori non-extremal- functions having the radial profile of bubbles. Besides,
quantitative stability results in the Hyperbolic space have been obtained for the isoperimetric
problem in [BDS15], and for the sharp Poincaré-Sobolev inequality in [BGKM22a, BGKM22b].
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2. Properties of Sobolev inequalities

2.1. Optimal constants and extremal functions. In this part, we prove a key pre-
compactness result for normalized extremizing sequences of Aopt

2∗ (M), and mention analogous

compactness properties for extremal functions of Bopt
2∗ (M). We start with the former.

Proposition 2.1. Let (M, g) be a compact d-dimensional Riemannian manifolds, d > 2.
Assume that either q < 2∗ or

q = 2∗ and Aopt
2∗ (M) > S2d.

Then, for every (un) ⊆ W 1,2(M) non-constant with ∥un∥Lq ≡ 1 satisfying

∥un∥Lq − Volg(M)2/q−1∥un∥L2

∥∇un∥L2

→ Aopt
q (M), as n ↑ ∞,

it holds up to subsequence that un converges strongly in Lq and in W 1,2 to some u ∈ Mq(A)
with ∥u∥L2∗ = 1. In particular, {u ∈ Mq(A) : ∥u∥Lq = 1} is pre-compact in the W 1,2-topology.

Proof. Up to a not relabelled subsequence, we can assume by Rellich pre-compactness that
un → u in Lq for every q < 2∗. Moreover, by assumption, we have for some δn ↓ 0 that

(2.1) 1 = ∥un∥2Lq ≥ (Aopt
q (M) − δn)∥∇un∥2L2 + Volg(M)2/q−1∥un∥2L2 ,

In particular, un is W 1,2-bounded, and, up to a further subsequence, we also have un ⇀ u
weakly in W 1,2(M) to some u ∈ W 1,2(M).

If q < 2∗, by lower-semicontinuity of the gradient term and L2-convergence of un to u, from
(2.1) we reach

1 ≥ Aopt
q (M)∥∇u∥L2 + Volg(M)2/q−1∥u∥L2 ≥ ∥u∥2Lq .

However, ∥u∥Lq = limn ∥un∥Lq = 1 so that u ∈ Mq(A), giving in turn that ∥∇un∥L2 →
∥∇u∥L2 . In particular, there is convergence of ∥un∥W 1,2 to ∥u∥W 1,2 . Being un already weakly
converging, this is equivalent to strong W 1,2-convergence concluding the proof in this case.

If q = 2∗ we argue by concentration-compactness. We shall use Proposition 2.2 below and
make use of the assumption in this case to rule out concentration phenomenona. If (a) in
Proposition 2.2 occurs, then an analogous argument as done after (2.1) gives the conclusion.
We are left to exclude (b) in Proposition 2.2 using the assumption in this case. By definition of
α(M) = S2d (cf. (1.4)), for every ϵ > 0 there is Bϵ > 0 so that, for every n ∈ N it is possible to
write

1 = ∥un∥2L2∗ ≤ (S2d + ϵ)∥∇un∥2L2 + Bϵ∥un∥L2 .

This and the fact that ∥un∥L2 → 0 guarantee that lim infn ∥∇un∥L2 > 0. Rearranging now the
above with (2.1), taking n to infinity, and recalling that un is L2-converging to zero in this
case, we get

Aopt
2∗ (M) ≤ S2d + ϵ.

We see now that for ϵ small enough we eventually reach a contradiction with Aopt
2∗ (M) > S2d.

So (b) does not occur and the proof is concluded also in this case.
Finally, the last statement follows easily from the above analysis. Indeed, a sequence

(un) ⊆ {u ∈ Mq(A) : ∥u∥Lq = 1} is either eventually constant, or not. In the first situation,
the renormalization guarantees that, up to a non-relabelled subsequence, un ≡ cst. and we are
done. The second situation is instead a particular case of what was addressed before. The
proof is therefore concluded. □
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In what follows we prove a dichotomy result based on concentration compactness arguments
that were needed in the above proof. This was studied in [NV22, Theorem 6.1] in the spirit of
[Lio84, Lio85] but in a different setting (converging metric measure spaces with synthetic Ricci
bounds). We include here a quick proof with the core of the argument to be self-contained.

Proposition 2.2. Let (M, g) be a compact and complete d-dimensional Riemannian manifold,
d > 2. Suppose that it holds

(2.2) ∥u∥2
L2∗ ≤ A∥∇u∥2L2 + B∥u∥2L2 , ∀u ∈ W 1,2(M),

for some constants A,B > 0, and there exist a sequence (un) ⊂ W 1,2(M) \ {0} satisfying

∥un∥2L2∗ ≥ An∥∇un∥2L2 + Bn∥un∥2L2 ,

for some sequences An → A, Bn → B. Then, setting ũn := un∥un∥−1
L2∗ , there exists a

non-relabeled subsequence such that only one of the following holds:

(a) ũn converges L2∗-strong to a function u ∈ W 1,2(M);
(b) ∥ũn∥L2 → 0 and there exists p ∈ M so that |ũn|2

∗
Volg ⇀ δp in duality with C(M).

Proof. By a scaling argument, we can assume ∥un∥L2∗ ≡ 1. As (An, Bn) → (A,B), we directly
deduce that un is W 1,2-bounded. Hence, up to a not relabeled subsequence, we have that
un converges to some u ∈ W 1,2(M) weakly in W 1,2 and in L2∗ , and strongly in L2, to some
function u ∈ W 1,2(M) and, by tightness as M is compact, that |un|2

∗
Volg ⇀ ν, as well as

|∇un|2Volg ⇀ µ, in duality with C(M) for a probability measure µ and for a finite non-negative
measure ν. We have [Lio84, Lio85] (see also the arguments [NV22, Lemma 6.6]) that there is a
countable set of indices J , points (xj)j∈J ⊆ M and weights (µj)j∈J , (νj)j∈J ⊆ R+, satisfying

ν = |u|2∗Volg +
∑
j∈J

νjδxj ,

µ ≥ |∇u|2Volg +
∑
j∈J

µjδxj ,

ν
2/2∗

j ≤ Aµj ,
∑
j∈J

ν
2/2∗

j < ∞.

We can therefore estimate

1 = lim
n↑∞

∥un∥2L2∗ ≥ lim inf
n↑∞

An∥∇un∥2L2 + Bn∥un∥2L2

≥ Aµ(M) + B∥u∥2L2

≥ A∥∇u∥2L2 +
∑
j∈J

Aµj + B∥u∥2L2

≥
(∫

|u|2∗dVolg

)2/2∗

+
∑
j∈J

ν
2/2∗

j

≥
(∫

|u|2∗dVolg +
∑
j∈J

νj

)2/2∗

= ν(M)2/2
∗

= 1,

having used that u satisfies (2.2) with A,B, the properties of µ, ν, as well as the fact that

t 7→ t2/2
∗

is strictly concave. However, since all inequalities must be equalities, we have that
either ∥u∥L2∗ = 1 and all νj = 0 for every j ∈ J , or u = 0 and there is j0 ∈ J so that νj0 = 1
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and νj = 0 for all j ≠ j0. The first case is precisely conclusion (a), as weak convergence in L2∗

together with convergence of the L2∗ norms implies strong convergence. If instead u = 0, then
(b) occurred implying at the same time that un is L2-converging to zero, and |un|2

∗
Volg is

weakly converging to a Dirac mass centred at p = xj0 . Having analysed all the possibilities, the
proof is now concluded. □

We now discuss the case of Bopt
2∗ (M). Recall that thanks to [Heb99, Proposition 5.1], we

have the lower bound (1.5). Notice that, even arguing with Proposition 2.2 for minimizing

sequences of Bopt
2∗ (M), we cannot exclude the outcome (b), as this time A = S2d and the

convergence to zero of the L2-norm makes it impossible to exploit (1.5). However, sufficient
criteria guaranteeing that M2∗(B) is not empty have been analysed in [DD01, Theorem 1 and
Corollary 1].

Theorem 2.3. Let (M, g) be a d-dimensional compact Riemannian manifold with d ≥ 4. Then,
at least one of the following is true

i) M2∗(B) ̸= ∅;

ii) Bopt
2∗ (M) = d−2

4(d−1)S
2
d maxM Rg.

In particular, if strict inequality holds in (1.5), then M2∗(B) ̸= ∅.

In lower dimensions, a related result was studied in [DD01] by considering p-Sobolev
inequalities with p ≠ 2. As we stick to p = 2 in this note, we do not pursue this any further. The
above is a dichotomy result achieved via a delicate study of blow-up phenomena of concentrating
sequences of solutions of partial differential equations. In particular, strict inequality in (1.5)
guarantees compactness. More generally, we recall that {u ∈ M2∗(B) : ∥u∥L2∗ = 1} is pre-
compact in L2∗-topology if strict inequality holds in (1.5). This result is commonly attributed
to the analysis contained in [DD01], see the introduction in [BM12], as well as [BM12, Corollary
1.4] for generalizations that, as a by-product, imply this fact. Therefore, arguing exactly as
done in Proposition 2.1, we deduce

(2.3) {u ∈ M2∗(B) : ∥u∥L2∗ = 1} is W 1,2 pre-compact, if d ≥ 4 and (1.5) holds strict.

Let us discuss a relevant class of manifolds when the above discussion applies. Notice that i)
must occur in Theorem 2.3 if either Rg ≤ 0, or Rg is constant. The first case being clear, we
discuss the second one. The case where (M, g) is conformally equivalent to the round sphere
has been fully investigated in [Heb99, Theorem 5.7]. In the remaining case, the resolution of
the Yamabe problem [Yam60] by combination of [Tru68, Aub76a, Sch84] guarantees that

Y (M) < S−2
d ,

having denoted Y (M) the Yamabe constant of (M, g) that is attained by some u ∈ W 1,2(M)

∥u∥2
L2∗Y (M) = ∥∇u∥2L2 +

d− 2

4(d− 1)
Rg∥u∥L2 ,

having used that Rg is constant. Thus, there holds

∥u∥2L2

Bopt
2∗ (M)

S2d
+ ∥∇u∥2L2 ≥ ∥u∥L2∗S−2

d > ∥u∥L2∗Y (M) = ∥∇u∥2L2 +
d− 2

4(d− 1)
Rg∥u∥L2 .

Rearranging, we get that ii) cannot occur.
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2.2. First and second-order variations. In this part, we study functional properties of
abstract Sobolev quotients. This investigation is analogous to [ENS22, Section 2]. We start
setting up some notation. We fix q ∈ (2, 2∗]. We omit the dependence on it of various quantities
to lighten the notation. For δ > 0, set

B := {u ∈ W 1,2(M) : u ≥ 0, ∥u∥Lq = 1}, Bδ(v) := {u ∈ B : ∥u− v∥W 1,2 ≤ δ}.

Arguing as in [ENS22, Lemma 2.1], B ⊆ W 1,2 is a Banach submanifold and the tangent space
at u ∈ B is given by

TuB :=
{
v ∈ W 1,2(M) :

∫
uq−1v dVolg = 0

}
.

Since W 1,2(M) is a Hilbert space, we denote by πTuB the L2-projection operator defined by

πTuB(φ) := φ−
(∫

uq−1φdVolg

)
u.

We compute now the first and second variations of the functional arising by the Sobolev
inequality (cf. [ENS22, Lemma 2.1]).

Lemma 2.4. Let (M, g) be a compact d-dimensional Riemannian manifold for d > 2. Set for
u ∈ W 1,2(M) \ {0} and A,B > 0, q ∈ (2, 2∗]:

Qq(u) :=
A∥∇u∥2L2 + B∥u∥2L2

∥u∥2Lq

.

For u ∈ B, the first and second variation of Qq at u restricted to TuB are denoted by
∇BQq(u),∇2

BQq(u) and are respectively given by

∇BQq(u)[φ] = 2

∫
A∇u∇φ + BuφdVolg,

and

∇2
BQq(u)[φ, η] = 2

∫
A∇φ∇η + Bφη dVolg − 2(q − 1)Qq(u)

∫
uq−2φη dVolg,

for all φ, η ∈ W 1,2(M) (omitting the projections πTuB inside the integrals).
Moreover, the following properties hold:

i) w 7→ ∇2
BQq(w)[φ,·]
∥φ∥C2,α

is continuous from C2,α ∩ B → C0,α with uniform modulus of

continuity over φ ∈ C2,α;

ii) w 7→ ∇2
BQq(w)[φ,η]

∥φ∥W1,2∥η∥W1,2
is continuous from B → R with uniform modulus of continuity

over φ, η ∈ W 1,2.

Proof. We fix any q ∈ (2, 2∗] and u ∈ B, and consider any φ ∈ C∞(M), ϵ ∈ (−1, 1). Set

uϵ := (u + ϵφ)/Iϵ, Iϵ := ∥u + ϵφ∥Lq .

We claim that uϵ is eventually for |ϵ| small, well defined. Indeed, from the estimate
∣∣|x+ ϵy|q −

|x|q
∣∣ ≤ q|ϵy|

∣∣|x + ϵy|q−1 + |x|q−1
∣∣ together with the fact that u, φ ∈ Lq, we reach that Iϵ → 1

as ϵ → 0. For future use, we notice

(2.4) lim
ϵ→0

1 − I2ϵ
ϵ

=
2

q

(∫
|u|q dVolg

) 2
q
−1

lim
ϵ

∫
|u|q − |u + ϵφ|q dVolg

ϵ
= −2

∫
uq−1φdVolg,
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having used dominated convergence theorem combined with the same estimate as before for
the last equality (recall also that ∥u∥Lq = 1). We start therefore computing the first variation

∇Qq(u)[φ] := lim
ϵ→0

Qq(uϵ) −Qq(u)

ϵ
.

By polarization, we derive

Qq(uϵ) −Qq(u)

ϵ
=

∫
A|∇(u + ϵφ)|2 + B|u + ϵφ|2 dVolg

ϵI2ϵ
−

∫
A|∇u|2 + B|u|2 dVolg

ϵ

=
1

ϵ

[ 1

I2ϵ
− 1

]
Qq(u) +

2

I2ϵ

∫
A∇u∇φ + BuφdVolg

+
ϵ

I2ϵ

∫
A|∇φ|2 + Bφ2 dVolg.

Hence, recalling that Iϵ → 1 (2.4), we deduce

∇Qq(u)[φ] = 2

∫
A∇u · ∇φ + BuφdVolg − 2Qq(u)

∫
uq−1φdVolg.

So, the restriction to TuB satisfies

∇BQq(u)[φ] = 2

∫
A∇u · ∇πTuB(φ) + BuπTuB(φ) dVolg.

We compute now the second variation for

∇2Qq(u)[φ,φ] :=
d2

dϵ2

∣∣∣
ϵ=0

Qq(uϵ).

Starting from the computations already performed for the first variation, we have

Qq(uϵ) − 2Qq(u) + Qq(v−ϵ)

ϵ2
=

1

ϵ2

( 1

I2ϵ
− 2 +

1

I2−ϵ

)
Qq(u)

+
2

ϵ

( 1

I2ϵ
− 1

I2−ϵ

)∫
A∇u∇φ + BuφdVolg

+
( 1

I2ϵ
+

1

I2−ϵ

)∫
A|∇φ|2 + Bφ2 dVolg.

Hence, taking the limit, we reach

∇2Qq(u)[φ,φ] = −2(q − 1)Qq(u)

∫
uq−2φ2 dVolg

+ 8
(∫

uq−1φdVolg

)∫
A∇u · ∇φ + BuφdVolg

+ 2

∫
A|∇φ|2 + Bφ2 dVolg.

So, the restriction to TuB reads

∇2
BQq(u)[φ,φ] = 2

∫
A|∇πTuB(φ)|2 + BπTuB(φ)2 dVolg

− 2(q − 1)Qq(u)

∫
uq−2πTuB(φ)2 dVolg.
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Recalling that Qq(1) = cst., the desired second variation formula hold for all couples φ, η ∈
W 1,2(M) by polarization.

We now verify i). For every w ∈ C2,α, we define Lw(φ) := −2A∆φ+Bφ−2(q−1)Qq(w)wq−2φ.
Then, for every w, v ∈ C2,α we have for some C > 0

∥Lw(φ) − Lv(φ)∥C0,α ≤ C
(
∥wq−2φ∥C0,α |Qq(w) −Qq(v)| + ∥φ|wq−2 − vq−2|∥C0,α

)
.

Hence, taking into account the continuity of t 7→ tq−2 and that of w 7→ Qq(w) in C2,α, it holds

∥Lw(φ) − Lv(φ)∥C0,α ≤ f(∥w − v∥C2,α)∥φ∥C2,α ,

for some modulus of continuity t 7→ f(t) with f(t) ↓ 0 as t ↓ 0 uniform on φ. To prove i), we
thus need to prove continuity properties of w 7→ πTwB as a map from C2,α ∩B → L(C2,α, C2,α).
This is implied by the estimate∣∣πTwB(φ) − πTvB(φ)

∣∣ =
∣∣∣w − v +

∫
(vq−1 − wq−1)φdVolg

∣∣∣ ≤ C∥w − w∥C0,α∥φ∥C2,α .

We now prove ii) and conclude. For every φ ∈ W 1,2(M), and interpreting by slight abuse of
notation Lw(φ) in distributional sense, we estimate similarly as before∥∥Lw(φ) − Lv(φ)

∥∥
H−1 ≤ C

(
∥wq−2φ∥H−1 |Qq(w) −Qq(v)| + ∥φ|wq−2 − vq−2|∥H−1

)
.

Then, by Hölder and the Sobolev inequality, we get

∥wq−2φ∥H−1 ≤ ∥wq−2∥Lq/(q−2)∥φ∥Lq ≤ C∥w∥q−2
Lq ∥φ∥W 1,2 ,

for some C > 0 and, using |a− b|
1

q−2 ≤ cq|a
1

q−2 − b
1

q−2 |, we estimate similarly

∥φ|wq−2 − vq−2|∥H−1 ≤ cq∥w − v∥q−2
Lq ∥φ∥Lq ≤ f

(
∥w − v∥W 1,2

)
∥φ∥W 1,2 ,

for some modulus of continuity t 7→ f(t) with f(t) ↓ 0 as t ↓ 0 uniform on φ. Recall also that
Qq(·) is continuous in W 1,2. From here, the conclusion follows by continuity properties of
w 7→ πTwB as a mapping B → L(W 1,2,W 1,2). □

We also have the crucial property that Qq(·) is analytic in the sense of [CCR15, Lemma 6]
whose proof carries over in our setting.

Proposition 2.5. Under the same assumptions of Lemma 2.4, the map u 7→ Qq(u) is analytic
on {u ∈ C2,α(M), u > 0}, in the sense that for every u0 ∈ C2,α(M) with u0 > 0, there is

ϵ > 0, and bounded multilinear operators Q(k)
q : C2,α(M)×k → R for every k ≥ 0, such that if

∥u− u0∥C2,α(M) < ϵ, then

∞∑
k=0

∥Q(k)
q ∥ · ∥u− u0∥kC2,α(M) < ∞,

as well as

Qq(u) =
∞∑
k=0

Q(k)
q (u− u0, u− u0, . . . , u− u0), in C2,α(M).
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2.3. Lyapunov-Schmidt reduction. The aim of this section is to discuss the Lyapunov-
Schmidt reduction associated with a general Sobolev quotient that, intuitively, reduces the
infinite dimensional problem to a more manageable finite dimensional one.

Suppose that

(2.5) inf
u∈W 1,2(M)\{0}

Qq(u) = inf
u∈W 1,2(M)\{0}

A∥∇u∥2L2 + B∥u∥2L2

∥u∥2Lq

= 1.

for A,B > 0 and q ∈ (2, 2∗] either as in Theorem 1.1 or Theorem 1.2. We shall not specify their
value to unify the discussion here. Consider the set of normalized extremal functions for (2.5)

M1 := {u ∈ B : Qq(u) = 1},

and the set of normalized critical points CP1 ⊆ W 1,2(M) as the collection of u ∈ B so that∫
M

A∇u · ∇φ + BuφdVolg = Qq(u)

∫
M

uq−1φdVolg, ∀φ ∈ C∞(M).

The sets M1 and CP1 depend on q, A,B and coincide with those discussed in the Introduction.
Later, in the main proofs, these constants will be chosen. Furthermore, we can regard
∇2

BQq(u)[·, ·] as a mapping TuB ⊆ W 1,2(M) → H−1(M). Since the operator associated with
this mapping is elliptic on a compact manifold, we know that

K := Ker∇2
BQq(u),

has finite dimension, say dim(K) = l < ∞. We then denote by K⊥ its L2-orthogonal
complement in W 1,2(M). Given the properties of Qq(·), a proof of the following result follows
by [Sim96, Section 3.12], as well as [ENS22, Appendix A] replacing the use of [ENS22, Lemma
2.1] with Lemma 2.4. Recall also that any v ∈ M1 is C2,α-regular and it s either strictly
positive or negative, by elliptic regularity (see, e.g., [Dru00]). We also refer the reader to the
instructive finite dimensional version for smooth functions in [Sim96, Appendix 3.16.1].

Proposition 2.6 (Lyapunov-Schmidt reduction). Let (M, g) be a d-dimensional compact
Riemannian manifold, d > 2 with a C3 metric. Suppose that (2.5) holds with A,B > 0 and
q ∈ (2, 2∗]. Fix v ∈ M1. There are an open neighborhood U of 0, such that U ⊂ K, and a map
F : U → K⊥ satisfying F (0) = 0, and ∇F (0) = 0 such that the following hold.

i) Let q : U → R be the analytic function defined by q(φ) = Qq(v + φ + F (φ)). Then

L := {v + φ + F (φ); φ ∈ U} ⊂ B,

and

∇BQq(v + φ + F (φ)) = πK∇BQq(v + φ + F (φ)) = ∇q(φ).

Furthermore, φ 7→ q(φ) is real analytic;
ii) There exists δ > 0, depending on v such that for any u ∈ Bδ(v), we have πK(u− v) ∈ U .

Furthermore, if u ∈ CP1 ∩ Bδ(v), then

u = v + πK(u− v) + F (πK(u− v));

iii) There exists C > 0, such that for all φ ∈ U and η ∈ K, we have the bound

∥∇F (φ)[η]∥C2,α ≤ C∥η∥C0,α .
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3. Quantitative stability

Aim of this section is to prove first a local quantitative stability, and then pass to the proof
of our main quantitative stability results.

3.1. Local quantitative stability. We shall continue assuming here the validity of (2.5),
without specifying the value of A,B > 0 and q ∈ (2, 2∗]. Recall now K,F from Proposition 2.6
and the definitions of M1 and CP1 given above.

Associated to the Lyapunov-Schmidt reduction, we have the following notions ([AS88] see
also [CCR15]). For δ > 0, v ∈ M1 given by Proposition 2.6 and u ∈ Bδ(v), we define the
Lyapunov-Schmidt projection operator

uL := v + πK(u− v) + F (πK(u− v)).

We can thus distinguish between the following notions:

• We say that v is non-degenerate if Ker∇2
BQq(v) = {0}. Hence, uL = v in this case for

every u ∈ Bδ(v);
• We say that v ∈ CP1 is integrable, provided that for every φ ∈ Ker∇2

BQq(v), there is a

one-parameter family of functions (vt)t∈(−δ,δ) with v0 = v, and dvt
dt |t=0 = φ, as well as

vt ∈ CP1 for all t sufficiently small. Conversely, we say that v is non non-integrable if
this property does not hold.

Arguing exactly as in [ENS22, Lemma 2.4] in the present setting, we have that if v is integrable,
then q as given in Proposition 2.6 is constant in a neighborhood of {0} ∈ K, and when v is an
integrable minimizer also

(3.1) M1 ∩ Bδ(v) = L,

where L is the set given in Proposition 2.6. We define, for v ∈ M1 and δ > 0, the local distance

dδ(u,M1) := inf

{
∥u− ṽ∥W 1,2

∥u∥W 1,2

: ṽ ∈ M1 ∩ Bδ(v)

}
.

Recall also the following inequality due to [ Loj65].

Proposition 3.1 ( Lojasievicz inequality). Let q : Rl → R be a real analytic map and
assume ∇q(0) = 0. Then, there exist δ > 0, C > 0, and γ > 0 depending on q and the critical
point 0, such that for all z ∈ B(0, δ), it holds

|q(z) − q(0)| ≥ C (inf{|φ− φ|; φ ∈ Bδ(0),∇q(φ) = 0})2+γ .

We can prove now the main local stability estimate.

Proposition 3.2 (Local quantitative stability). Let (M, g) be a closed d-dimensional
Riemannian manifold, d > 2. Suppose that (2.5) holds with A,B > 0 and q ∈ (2, 2∗]. Fix
v ∈ M1. Then, there exist positive constants C, γ, δ depending on v such that

Qq(u) − 1 ≥ Cdδ(u,M1)2+γ , ∀u ∈ Bδ(v).

Moreover, if v is integrable or non-degenerate, we may take γ = 0.

Proof. In this proof, C is a general positive constant depending on v (in particular on (M, g)
and the value of q) whose value might change from line to line.
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Taking δ > 0 in Proposition 2.6 smaller if necessary, we can ensure that for any ϵ > 0, we
have ∥uL − u∥W 1,2 ≤ ϵ, as well as ∥uL − v∥W 1,2 ≤ ϵ. In particular, we can write

Qq(u) − 1 = (Qq(u) −Qq(uL)) + (Qq(uL) − 1) =: I + II.

We analyse the two term separately. For the first term, write u = uL + u⊥, and Taylor expand
the functional to get

I = ∇BQq(uL)[u⊥] +
1

2
∇2

BQq(ζ)[u⊥, u⊥]

=
1

2
∇2

BQq(v)[u⊥, u⊥] + o(1)∥u⊥∥2W 1,2 ≥ Cλ1∥u⊥∥2W 1,2 = C∥u− uL∥2W 1,2 ,

(3.2)

where λ1 is the smallest non-zero eigenvalue of the Hessian of Qq. Here ζ is a geodesic point
in B between u and uL and o(1) is a quantity that goes to zero as ∥u− v∥W 1,2 goes to zero.
For the second equality, we used the fact that ∇BQq(uL)[u⊥] = 0, as well as continuity of the
Hessian, cf. Lemma 2.4 property (ii). The last inequality holds by taking δ > 0 small enough.

We can now turn to the second term II specializing the discussion depending on v being
non-degenerate, integrable or non-integrable. First, if v is non-degenerate, we have uL = v, so
II = 0 and (3.2) immediatly yields the conclusion. When v is integrable, we infer Qq(uL) =
q(0) = Qq(v), where the first equality follows from q being constant in a neighborhood of the
origin (cf. above (3.1)). In particular, also in this situation II = 0 and since uL ∈ M1 ∩Bδ(v)
the estimate (3.2) combined with the simple observation

∥u− uL∥2W 1,2 ≥
(
inf

{
∥u− ṽ∥W 1,2 : ṽ ∈ M1 ∩Bδ(v)

})2
,

immediately give the conclusion. It remains to handle the case when v is non-integrable.
Denoting φ = πK(u− v), we deduce

II = q(φ) − q(0) ≥ C (inf{|φ− φ|; φ ∈ K ∩Bδ(0),∇q(φ) = 0})2+γ

≥ C inf{∥uL − ṽ∥W 1,2 ; ṽ ∈ M1 ∩ Bδ(v)}2+γ ,

thanks to Proposition 3.1, and where we used the second and third properties of Proposition
2.6, while for the last inequality we argued as in [ENS22, page 405]. Thus, the conclusion of
the proof follows by noticing

Qq(u) − 1 ≥ C∥u− uL∥2W 1,2 + C inf{∥uL − v̂∥W 1,2 ; v̂ ∈ M1 ∩ Bδ(v)}2+γ

≥ C
(
∥u− uL∥W 1,2 + inf{∥uL − v̂∥W 1,2 ; v̂ ∈ M1 ∩ Bδ(v)}

)2+γ

≥ C
(
inf

{
∥u− ṽ∥W 1,2 : ṽ ∈ M1 ∩Bδ(v)

})2+γ
.

□

3.2. Proof of Theorem 1.1 and Theorem 1.2. We start with the proof of Theorem 1.1
and then explain how to modify it to obtain Theorem 1.2.

Fix any q ∈ (2, 2∗] and set here A = Aopt
q (M) and B = Volg(M)2/q−1. We claim that it is

enough to prove Theorem 1.1 for every u ∈ B = {u ∈ W 1,2(M) : ∥u∥Lq = 1}. Indeed, the main
estimate is zero-homogeneous in u and

inf{∥u− v∥W 1,2 : v ∈ Mq(A) ∩ B} ≥ inf

{
∥u− v∥W 1,2

∥u∥W 1,2

: v ∈ Mq(A)

}
=: d(u,Mq(A)).

Thus, fix v ∈ Mq(A) with ∥v∥Lq(M) = 1. Let us invoke Proposition 3.2 with M1 = Mq(A)∩B
to get the existence of constants γ(v), δ(v), and C(v). In particular, by compactness of
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Mq(A)∩B, c.f. Proposition 2.1, we can take a finite subcover (indexed by I) of the open cover

of balls B(v, δ(v)/2). Notice that, in the case q = 2∗, our extra assumption on Aopt
2∗ (M) plays a

crucial role. Set now

δ0 = min
I

δ(vi)/2, γ0 = max
I

γ(vi)/2, and C0 = min
I

C(vi).

We now consider two cases: let u ∈ B satisfy either d(u,Mq(A) ∩ B) ≤ δ0/4, or d(u,Mq(A) ∩
B) > δ0/4. Assuming the former, there exists i ∈ I such that ∥vi − u∥W 1,2 ≤ δi/2. In
particular, the triangle inequality implies that if v is the closest element of Mq(A) ∩ B to u,
then ∥v − u∥W 1,2 ≤ δi. Thus, local quantitative stability implies, cf. Proposition 3.2,

Qq(u) − 1 ≥ C(vi)dδi(u,Mq(A) ∩ B)2+γi ≥ C0d(u,Mq(A) ∩ B)2+γ0 .

On the other hand, in the case d(u,Mq(A) ∩ B) ≥ δ0/4, we argue as follows. By (the
contrapositive of) Proposition 2.1, we get the existence of ϵ > 0 such that

u ∈ B, d(u,Mq(A) ∩ B) >
δ0
4

⇒
1 − Volg(M)2/q−1∥u∥2L2

∥∇u∥2
L2

≤ Aopt
q (M) − ϵ,

(notice that, as we require d(u,Mq(A) ∩B) > δ0/4, it follows automatically that u cannot be a
constant, hence the ratio is well defined). Rearranging, the last conclusion becomes

Qq(u) − 1 > ϵ∥∇u∥2L2 .

We claim that, there exist l > 0 so that

u ∈ B, d(u,Mq(A) ∩ B) >
δ0
4

⇒ ∥∇u∥L2 > l.

If not, we could find a sequence (un) ⊆ W 1,2(M) with ∥un∥Lq = 1 for all n ∈ N so that
d(u,Mq(A)∩B) > δ0/4 holds for all n ∈ N but ∥∇un∥L2 → 0 as n ↑ ∞. Up to a not relabelled
subsequence, we thus infer that there is u ∈ W 1,2(M) so that un converges strong in L2 and
weak in W 1,2(M) to u. However, by lower semicontinuity, it follows that ∥∇u∥L2 = 0. In
particular, u must be constant by the Poincaré inequality, say u ≡ c for some c ∈ R \ {0}
and therefore we get directly ∥un∥W 1,2 → ∥u∥W 1,2 as n ↑ ∞. Since W 1,2 is Hilbert and un is
already W 1,2-weak convergent, there is therefore strong W 1,2-convergence to the constant c. In
particular, the Sobolev inequality implies that un → c in Lq (note that this is not trivial when
q = 2∗). In particular, ∥c∥Lq = 1 and therefore c is a competitor in Mq(A) ∩ B. However, this
would violate the uniform condition

δ0
4

< d(un,Mq(A) ∩ B) ≤ ∥un − c∥W 1,2

∥un∥W 1,2

,

for n large enough. Finally, setting C = min{C0, l
2ϵ} we conclude the proof of Theorem 1.1

(note that d(u,Mq(A)) ≤ 1 always hold).

Let us now discuss the straightforward modifications of the above arguments to obtain the proof
of Theorem 1.2. In this case, we simply need to consider q = 2∗, A = S2d, B = Bopt

2∗ (M) and
M1 = M2∗(B) ∩ B. When d(u,M2∗(B) ∩ B) ≤ δ0/4 we repeat verbatim the above arguments,
the only difference being the use of Theorem 2.3 and (2.3) replacing the role of Proposition 2.1.
Finally, the case d(u,M2∗(B) ∩ B) ≥ δ0/4 is now excluded by the last assumption in Theorem
1.2 choosing δ accordingly. □
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Remark 3.3. As already discussed in the Introduction, the concentration-compactness result in
Proposition 2.1 made it possible to deduce in Theorem 1.1 that, when u is far away from the
set of normalized optimizers, Qq(u) is far away from its minimum value. This principle does
not appear in [DD01] (recall Theorem 2.3 and (2.3)). Consequently, the only information we
get when applying our strategy in Theorem 1.2 is a stability for functions that are assumed
sufficiently close to the optimizers.

4. Degenerate stability

In this part, we prove degenerate stability results for Aopt
q (M).

4.1. Proof of Theorem 1.3. Denote by λ(M) the first non-zero eigenvalue of the Laplace-
Beltrami operator on M , and let φ ∈ W 1,2(M) be the corresponding eigenfunction satisfying

(4.1) −∆φ = λ(M)φ,

∫
φdVolg = 0.

Recall that λ(M) admits the following variational characterization

λ(M) = inf
f∈W 1,2(M)

f ̸=cst.

∥∇f∥2L2

∥f − f̄∥2
L2

,

where f̄ =
∫
f dVolg. Under the standing hypotheses, we claim that

(4.2)
q − 2

λ(M)
Volg(M)

2
q
−1

= Aopt
q (M).

That the left-hand side is bounded by the right-hand is follows from the well-known principle
that the Sobolev inequality implies the Poincaré inequality on M , see e.g. the argument in
[BGL14, Proposition 6.2.2]. For the converse inequality, we argue as follows. By definition of

Aopt
q (M), let us consider a sequence (un) ⊆ W 1,2(M) of non-constant functions so that

∥un∥Lq − Volg(M)2/q−1∥un∥L2

∥∇un∥L2

→ Aopt
q (M), as n ↑ ∞.

Without loss of generality, we can suppose that ∥un∥Lq = 1 for all n ∈ N. We are in a position
to invoke Proposition 2.1 to deduce that, up to a non-relabelled subsequence, un → u in Lq

and in W 1,2, for some non-zero u ∈ Mq(A). By assumption, we must have that u ≡ c for

c = Volg(M)−1/q (as constant functions are the only extremal functions and such c has unitary
Lq-norm). By the quantitative linearization principle for Sobolev inequalities [NV22, Lemma
6.7] (and by suitably scaling the volume in the norms, as there it is assumed a probability
reference measure), setting fn := un − c, we deduce

Aopt
q (M) = lim

n↑∞

∥un∥Lq − Volg(M)2/q−1∥un∥L2

∥∇un∥L2

= (q − 2)Volg(M)
2
q
−1

lim
n↑∞

∫
|fn − f̄n|2 dVolg

∥∇fn∥L2

≤ q − 2

λ(M)
Volg(M)

2
q
−1

.

This completes the proof of (4.2).

Let us now consider the constant extremal u = c = Volg(M)−1/q. By scaling, we can assume
that the eigenfunction φ in (4.1) satisfies ∥φ∥Lq = 1. Then, the condition

∫
φdVolg = 0 implies
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that φ ∈ TuB. Hence, we can Taylor expand the functional Qq around u = c, in the direction
φ to infer

Qq(c + ϵφ) − 1 = Qq(c + ϵφ) −Qq(c) = ϵ∇BQq(c)[φ] +
ϵ2

2
∇2

BQq(ξ)[φ,φ]

= ϵ2
1

2
∇2

BQq(c)[φ,φ] + o(1)∥ϵφ∥2W 1,2 ,

where ξ ∈ B is a geodesic point between c and c + ϵφ, and o(1) goes to zero as ϵ ↓ 0. By the
computation of Lemma 2.4, we know that

1

2
∇2

BQq(c)[φ,φ] = Aopt
q (M)

∫
λ(M)φ2 dVolg + Volg(M)

2
q
−1

∫
φ2 dVolg

− (q − 1)Qq(c)

∫
cq−2φ2 dVolg

= (q − 1)Volg(M)
2
q
−1

∫
φ2 dVolg − Volg(M)

2
q
−1

(q − 1)

∫
φ2 dVolg = 0,

having used (4.2), and the choice c = Volg(M)−1/q. Finally, by contradiction, if γ = 0 were
possible, we would reach

C inf
v∈Mq(A)

∥c + ϵφ− v∥2W 1,2 ≤ Qq(c + ϵφ) − 1 ≈ ∥ϵφ∥2W 1,2 · o(1)

which is false for ϵ ≪ 1. This concludes the proof. □

4.2. Proof of Corollary 1.4. We prove first i). Let d > 2 and consider any q ∈ (2, 2∗). Recall
[BE85, BVV91, Bec93] (also rearranging in [Fra22, Eq. (5)]) that

Aopt
q (Sd) =

q − 2

d
Vol(Sd)2/q−1,

and that the only extremal functions are constant functions. Thus, Theorem 1.3 guarantees that
the stability is degenerate. To check that γ = 2 is optimal, we can rearrange the quantitative
stability in [Fra22, Theorem 2] and we have for some cd,q > 0

Aopt
q (Sd)∥∇u∥2L2 − Vol(Sd)2/q−1∥u∥2L2

∥u∥2Lq

− 1 ≥ cd,q

(
inf
c∈R

∥u− c∥W 1,2

∥u∥W 1,2

)4

,

for every u ∈ W 1,2(Sd) \ {0}. Since in [Fra22, Theorem 2] the exponent 4 is proven to be sharp,
we directly deduce that in Sd, and in the range q ∈ (2, 2∗), Theorem 1.1 holds sharp with γ = 2.

We conclude by proving ii). For d > 2, consider the closed Riemannian manifold

(4.3) M∗ := S1
(

1√
d−2

)
× Sd−1,

equipped with the product metric denoted by g. In [Fra22], the author consider the following
conformally invariant Sobolev inequality :

(4.4) Y (M∗)∥u∥2L2∗ ≤ Eg(u), ∀u ∈ W 1,2(M∗)

where Eg(u) :=
∫
|∇u|2 + d−2

4(d−1)Rgu
2 dVolg, and Y (M∗) is the Yamabe constant of M∗. Notice

Rg = (d− 2)(d− 1), Volg(M∗) =
2π√
d− 2

Vol(Sd−1).
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Moreover, the Yamabe constant can be also computed explicitly (see [Fra22] and [Sch89])

Y (M∗) =
(d− 2)2

4
Volg(M∗)

2/d.

Hence, rearranging in (4.4), we have for all u ∈ W 1,2(M∗)

(4.5) ∥u∥2
L2∗ ≤ 4

(d− 2)2
Volg(M∗)

−2/d∥∇u∥2L2 + Volg(M∗)
−2/d∥u∥2L2 .

Since (4.4) is sharp by definition of the Yamabe constant Y (M∗), we deduce that

Aopt
2∗ (M∗) =

4

(d− 2)2
Volg(M∗)

−2/d.

Now, constant functions are the only extremal functions in (4.4) and hence also in (4.5). Thus,
to apply Theorem 1.3 we need to check that

(4.6) S2d < Aopt
2∗ (M∗),

Recalling that S2d = 4
d(d−2)Vol(Sd)−2/d and using the above computations, (4.6) becomes

4

d(d− 2)
<

4

(d− 2)2
(d− 2)1/d.

which is always true for d > 2. Thus, Theorem 1.3 guarantees that the stability is degenerate.
We now check that γ = 2 is optimal and conclude. By [Fra22, Theorem 3], there is a constant
cd > 0 so that for every u ∈ W 1,2(M∗) \ {0} it holds sharp

(4.7) Eg(u) − Y (M∗)∥u∥2L2∗ ≥ cd inf
c∈R

Eg(u− c)2

Eg(u)
.

Notice that Eg(u) is comparable up to dimensional constants to ∥u∥2W 1,2 (thanks to the fact
that Rg is constant). Hence, we can rearrange in (4.7) using (4.5) to deduce

Aopt
2∗ (M∗)∥∇u∥2L2 + Vol(M∗)

−2/d∥u∥2L2

∥u∥L2∗
− 1 ≥ cd

(
inf
c∈R

∥u− c∥W 1,2

∥u∥W 1,2

)4

,

for every u ∈ W 1,2(M∗) \ {0}, and for a possibly different constant cd. Finally, this concludes
the proof of ii) since the optimality in (4.7) implies that γ = 2 is sharp. □

Acknowledgments. F.N. is a member of INDAM-GNAMPA and acknowledges partial support
of the Academy of Finland project Approximate incidence geometry, Grant No. 355453 and
of the MIUR Excellence Department Project awarded to the Department of Mathematics,
University of Pisa, CUP I57G22000700001. F.N. would like to thank I. Y. Violo for numerous
conversations around the topics of this note. Both authors would like to thank I.Y. Violo, and
L. Spolaor for useful discussions and interesting comments.

References

[And05] Michael T. Anderson, On uniqueness and differentiability in the space of Yamabe metrics, Commun.
Contemp. Math. 7 (2005), no. 3, 299–310. MR 2151861 (Cited on page 5.)

[AS88] David Adams and Leon Simon, Rates of asymptotic convergence near isolated singularities of
geometric extrema, Indiana Univ. Math. J. 37 (1988), no. 2, 225–254. MR 963501 (Cited on
page 13.)
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